CMSIS-DSP
Version 1.4.7
CMSIS DSP Software Library
|
Functions | |
void | arm_fir_interpolate_f32 (const arm_fir_interpolate_instance_f32 *S, float32_t *pSrc, float32_t *pDst, uint32_t blockSize) |
Processing function for the floating-point FIR interpolator. | |
arm_status | arm_fir_interpolate_init_f32 (arm_fir_interpolate_instance_f32 *S, uint8_t L, uint16_t numTaps, float32_t *pCoeffs, float32_t *pState, uint32_t blockSize) |
Initialization function for the floating-point FIR interpolator. | |
arm_status | arm_fir_interpolate_init_q15 (arm_fir_interpolate_instance_q15 *S, uint8_t L, uint16_t numTaps, q15_t *pCoeffs, q15_t *pState, uint32_t blockSize) |
Initialization function for the Q15 FIR interpolator. | |
arm_status | arm_fir_interpolate_init_q31 (arm_fir_interpolate_instance_q31 *S, uint8_t L, uint16_t numTaps, q31_t *pCoeffs, q31_t *pState, uint32_t blockSize) |
Initialization function for the Q31 FIR interpolator. | |
void | arm_fir_interpolate_q15 (const arm_fir_interpolate_instance_q15 *S, q15_t *pSrc, q15_t *pDst, uint32_t blockSize) |
Processing function for the Q15 FIR interpolator. | |
void | arm_fir_interpolate_q31 (const arm_fir_interpolate_instance_q31 *S, q31_t *pSrc, q31_t *pDst, uint32_t blockSize) |
Processing function for the Q31 FIR interpolator. | |
These functions combine an upsampler (zero stuffer) and an FIR filter. They are used in multirate systems for increasing the sample rate of a signal without introducing high frequency images. Conceptually, the functions are equivalent to the block diagram below:
After upsampling by a factor of L
, the signal should be filtered by a lowpass filter with a normalized cutoff frequency of 1/L
in order to eliminate high frequency copies of the spectrum. The user of the function is responsible for providing the filter coefficients.
The FIR interpolator functions provided in the CMSIS DSP Library combine the upsampler and FIR filter in an efficient manner. The upsampler inserts L-1
zeros between each sample. Instead of multiplying by these zero values, the FIR filter is designed to skip them. This leads to an efficient implementation without any wasted effort. The functions operate on blocks of input and output data. pSrc
points to an array of blockSize
input values and pDst
points to an array of blockSize*L
output values.
The library provides separate functions for Q15, Q31, and floating-point data types.
y[n] = b[0] * x[n] + b[L] * x[n-1] + ... + b[L*(phaseLength-1)] * x[n-phaseLength+1] y[n+1] = b[1] * x[n] + b[L+1] * x[n-1] + ... + b[L*(phaseLength-1)+1] * x[n-phaseLength+1] ... y[n+(L-1)] = b[L-1] * x[n] + b[2*L-1] * x[n-1] + ....+ b[L*(phaseLength-1)+(L-1)] * x[n-phaseLength+1]This approach is more efficient than straightforward upsample-then-filter algorithms. With this method the computation is reduced by a factor of
1/L
when compared to using a standard FIR filter. pCoeffs
points to a coefficient array of size numTaps
. numTaps
must be a multiple of the interpolation factor L
and this is checked by the initialization functions. Internally, the function divides the FIR filter's impulse response into shorter filters of length phaseLength=numTaps/L
. Coefficients are stored in time reversed order. {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
pState
points to a state array of size blockSize + phaseLength - 1
. Samples in the state buffer are stored in the order: {x[n-phaseLength+1], x[n-phaseLength], x[n-phaseLength-1], x[n-phaseLength-2]....x[0], x[1], ..., x[blockSize-1]}The state variables are updated after each block of data is processed, the coefficients are untouched.
arm_fir_interpolate_instance_f32 S = {L, phaseLength, pCoeffs, pState}; arm_fir_interpolate_instance_q31 S = {L, phaseLength, pCoeffs, pState}; arm_fir_interpolate_instance_q15 S = {L, phaseLength, pCoeffs, pState};where
L
is the interpolation factor; phaseLength=numTaps/L
is the length of each of the shorter FIR filters used internally, pCoeffs
is the address of the coefficient buffer; pState
is the address of the state buffer. Be sure to set the values in the state buffer to zeros when doing static initialization.void arm_fir_interpolate_f32 | ( | const arm_fir_interpolate_instance_f32 * | S, |
float32_t * | pSrc, | ||
float32_t * | pDst, | ||
uint32_t | blockSize | ||
) |
[in] | *S | points to an instance of the floating-point FIR interpolator structure. |
[in] | *pSrc | points to the block of input data. |
[out] | *pDst | points to the block of output data. |
[in] | blockSize | number of input samples to process per call. |
References arm_fir_interpolate_instance_f32::L, arm_fir_interpolate_instance_f32::pCoeffs, arm_fir_interpolate_instance_f32::phaseLength, and arm_fir_interpolate_instance_f32::pState.
arm_status arm_fir_interpolate_init_f32 | ( | arm_fir_interpolate_instance_f32 * | S, |
uint8_t | L, | ||
uint16_t | numTaps, | ||
float32_t * | pCoeffs, | ||
float32_t * | pState, | ||
uint32_t | blockSize | ||
) |
[in,out] | *S | points to an instance of the floating-point FIR interpolator structure. |
[in] | L | upsample factor. |
[in] | numTaps | number of filter coefficients in the filter. |
[in] | *pCoeffs | points to the filter coefficient buffer. |
[in] | *pState | points to the state buffer. |
[in] | blockSize | number of input samples to process per call. |
numTaps
is not a multiple of the interpolation factor L
.Description:
pCoeffs
points to the array of filter coefficients stored in time reversed order: {b[numTaps-1], b[numTaps-2], b[numTaps-2], ..., b[1], b[0]}The length of the filter
numTaps
must be a multiple of the interpolation factor L
. pState
points to the array of state variables. pState
is of length (numTaps/L)+blockSize-1
words where blockSize
is the number of input samples processed by each call to arm_fir_interpolate_f32()
. References ARM_MATH_LENGTH_ERROR, ARM_MATH_SUCCESS, arm_fir_interpolate_instance_f32::L, arm_fir_interpolate_instance_f32::pCoeffs, arm_fir_interpolate_instance_f32::phaseLength, arm_fir_interpolate_instance_f32::pState, and status.
arm_status arm_fir_interpolate_init_q15 | ( | arm_fir_interpolate_instance_q15 * | S, |
uint8_t | L, | ||
uint16_t | numTaps, | ||
q15_t * | pCoeffs, | ||
q15_t * | pState, | ||
uint32_t | blockSize | ||
) |
[in,out] | *S | points to an instance of the Q15 FIR interpolator structure. |
[in] | L | upsample factor. |
[in] | numTaps | number of filter coefficients in the filter. |
[in] | *pCoeffs | points to the filter coefficient buffer. |
[in] | *pState | points to the state buffer. |
[in] | blockSize | number of input samples to process per call. |
numTaps
is not a multiple of the interpolation factor L
.Description:
pCoeffs
points to the array of filter coefficients stored in time reversed order: {b[numTaps-1], b[numTaps-2], b[numTaps-2], ..., b[1], b[0]}The length of the filter
numTaps
must be a multiple of the interpolation factor L
. pState
points to the array of state variables. pState
is of length (numTaps/L)+blockSize-1
words where blockSize
is the number of input samples processed by each call to arm_fir_interpolate_q15()
. References ARM_MATH_LENGTH_ERROR, ARM_MATH_SUCCESS, arm_fir_interpolate_instance_q15::L, arm_fir_interpolate_instance_q15::pCoeffs, arm_fir_interpolate_instance_q15::phaseLength, arm_fir_interpolate_instance_q15::pState, and status.
arm_status arm_fir_interpolate_init_q31 | ( | arm_fir_interpolate_instance_q31 * | S, |
uint8_t | L, | ||
uint16_t | numTaps, | ||
q31_t * | pCoeffs, | ||
q31_t * | pState, | ||
uint32_t | blockSize | ||
) |
[in,out] | *S | points to an instance of the Q31 FIR interpolator structure. |
[in] | L | upsample factor. |
[in] | numTaps | number of filter coefficients in the filter. |
[in] | *pCoeffs | points to the filter coefficient buffer. |
[in] | *pState | points to the state buffer. |
[in] | blockSize | number of input samples to process per call. |
numTaps
is not a multiple of the interpolation factor L
.Description:
pCoeffs
points to the array of filter coefficients stored in time reversed order: {b[numTaps-1], b[numTaps-2], b[numTaps-2], ..., b[1], b[0]}The length of the filter
numTaps
must be a multiple of the interpolation factor L
. pState
points to the array of state variables. pState
is of length (numTaps/L)+blockSize-1
words where blockSize
is the number of input samples processed by each call to arm_fir_interpolate_q31()
. References ARM_MATH_LENGTH_ERROR, ARM_MATH_SUCCESS, arm_fir_interpolate_instance_q31::L, arm_fir_interpolate_instance_q31::pCoeffs, arm_fir_interpolate_instance_q31::phaseLength, arm_fir_interpolate_instance_q31::pState, and status.
void arm_fir_interpolate_q15 | ( | const arm_fir_interpolate_instance_q15 * | S, |
q15_t * | pSrc, | ||
q15_t * | pDst, | ||
uint32_t | blockSize | ||
) |
[in] | *S | points to an instance of the Q15 FIR interpolator structure. |
[in] | *pSrc | points to the block of input data. |
[out] | *pDst | points to the block of output data. |
[in] | blockSize | number of input samples to process per call. |
Scaling and Overflow Behavior:
References __SIMD32, arm_fir_interpolate_instance_q15::L, arm_fir_interpolate_instance_q15::pCoeffs, arm_fir_interpolate_instance_q15::phaseLength, and arm_fir_interpolate_instance_q15::pState.
void arm_fir_interpolate_q31 | ( | const arm_fir_interpolate_instance_q31 * | S, |
q31_t * | pSrc, | ||
q31_t * | pDst, | ||
uint32_t | blockSize | ||
) |
[in] | *S | points to an instance of the Q31 FIR interpolator structure. |
[in] | *pSrc | points to the block of input data. |
[out] | *pDst | points to the block of output data. |
[in] | blockSize | number of input samples to process per call. |
Scaling and Overflow Behavior:
1/(numTaps/L)
. since numTaps/L
additions occur per output sample. After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format. References arm_fir_interpolate_instance_q31::L, arm_fir_interpolate_instance_q31::pCoeffs, arm_fir_interpolate_instance_q31::phaseLength, and arm_fir_interpolate_instance_q31::pState.